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Upon the introduction of a gas bubble into a liquid possessing a uniform
thermal gradient, an unsteady thermocapillary flow begins. Ultimately, the
bubble attains a constant velocity. This theoretical analysis focuses upon
the transient period for a bubble in a microgravity environment and is
restricted to situations wherein the flow is sufficiently slow such that
inertial terms in the Navier-Stokes equation and convective terms in the
energy equation may be safely neglected (i.e., both Reynolds and Marangoni
numbers are small). The resulting linear equations were solved analytically
in the Laplace domain with the Prandtl number of the liquid as a parameter;
inversion was accomplished numerically using a standard IMSL routine. In the
asymptotic long-time limit, our theory agrees with the steady-state theory of
Young, Goldstein, and Block. The theory predicts that more than 90 percent of
the terminal steady velocity is achieved when the smallest dimensionless time,
i.e., the one based upon the largest time scale--viscous or thermal--equals
unity.
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1. INTRODUCTION

Forces other than gravity are expected to often dominate the migration of
bubbles in outer space. In particular, thermocapillary forces will cause
bubbles to migrate in a thermal gradient. Consider the bubble depicted in
Fig. 1. The interface next to the hot liquid will be hotter than that next to
the cold liquid. Assuming that surface tension varies inversely with
temperature, as is often the case, the cold interface will have a higher
surface tension than the hot interface. The thermocapillary stresses are such
that near the interface liquid flows from the hot side to the cold side, as
indicated by the arrows. Viscous stresses within the fluid oppose these
thermocapillary stresses, causing the bubble to migrate toward the hot side.
If the thermal gradient is constant throughout the region, the analysis of
Young et al. (1959) revealed that the bubble will ultimately migrate with a
steady velocity.

In the processing of materials in outer space, nonisothermal bubble-1iquid
systems will be common. Control of these systems will require a good
understanding of thermocapillary migration. For example, bubbles form in
glass melts during the manufacturing process; their removal is essential for
the glass to be useful. On Earth, gravitational forces aid in their removal.
During the containerless processing of glass in the microgravity environment
of space, thermocapillary-forces are expected to assist their removal (Mattox
et al. 1982, Subramanian 1981). Thermocapillary migration may also be
important in the design of two-phase heat exchangers for use in outer space.

A poor design may unexpectedly permit bubbles to migrate en masse to the
heating surface. A layer of gas next to the hot surface would act as a thermal
insulator and prevent the efficient transfer of heat to the liquid phase.

In contrast to prior experimental and theoretical studies on

thermocapiliary migration (Balasubramaniam and Chai 1987, Hardy 1979, Mattox



et al. 1982, Subramanian 1981, Szymczyk et al. 1987, Young et al. 1959), which
focus upon steady systems, we here consider the unsteady development of
thermocapillary migration. Analysis of unsteady thefmocapillary migration is
important for several reasons. First, to study the steady state, one must be
able to estimate the time required for transients to die out. Also, some
unexplained results of supposedly steady-state experiments (Neuhaus and
Feuerbacher 1986, Siekmann et al. 1986), e.g., velocities less than predicted
steady-state values, may possibly be explained by an unsteady analysis.
Lastly, the transient period is expected to be long for relatively large
bubbles; a theory for their transport will be useful.
2. FORMULATION

Consider a thermocapillary experiment conducted in outer space as shown
in Fig. 2. An enclosure consisting of end plates maintained at different
temperatures and of insulated side walls is filled with a liquid. In the
absence of buoyancy effects, there is no fluid motion and, as depicted in the
figure, the temperature field becomes linear when thermal equilibrium is
obtained. The experiment then begins with the introduction of a small gas
bubble. We neglect the small immediate effect of the bubble's introduction
upon the velocity and temperature fields. Soon thereafter the conduction of
heat to the interface causes thermocapillary stresses to develop and migration
to begin. As is commonly done, we assume that both viscosity and density of
the 1iquid phase are essentially constant throughout the volume, that
transport processes within the bubble phase may be neglected relative to those
in the 1iquid phase, and that surface tension is a linear function of
interfacial temperature. To be definite, we assume that or = do/dT is
negative such that migration is toward the hotter fluid. We also assume that
the bubble remains spherical during the acceleration; this is subject to a_

posteriori verification. Finally, we assume thatkboth fluid inertia and the



convective transport of heat may be neglected. These latter assumptions
restrict the analysis to low Reynolds and Marangoni (thermal Peclet) numbers.

Given the above assumptions, the dimensionless temperature field T
obeys the unsteady energy equation

aT 2
Pr 3 = veT QD)

in the region outside of the bubble. Here, the liquid's Prandtl number

Pr = v/a, the ratio of kinematic viscosity to thermal diffusivity, appears
multiplying the left-hand side. The variable t is time d1v1déd by the
viscous time scale a2/v, with the characteristic length scale "a" being the
radius of the bubble. The dependent variable T 1is the scaled difference
between the actual temperature and that undisturbed temperature which prevails
in the plane of the bubble's center. The characteristic temperature scale is
the product aA, where A is the undisturbed temperature gradient in the
system. Eq. (1) is written with the bubble's center as the origin of the
coordinate system.

Similarly, the velocity field obeys the unsteady Stokes equation

g% = - (Vp + %%) + Vzv (2)
in a reference frame moving with the bubble. The vector v 1{is the scaled
difference between the fluid's and bubble's velocities. The velocity scale
for both v and U = kU(t), the scaled bubble velocity, is the positive
quaﬁtity -aTaA/p. Because the bubble's reference frame is noninertial, there
appears in Eq. (2) the fictitious force dU(t)/dt. This force adds to the
gradient of the hydrodynamic pressure p and vanishes when a steady bubble
velocity is obtained.

At the interface, viscous and thermocapillary stresses balance at each

point. Now both T and v are axisymmetric with respect to an axis that



passes through the bubble's origin and is parallel to the unit vector Kk,
which points in the direction of the temperature gradient. It follows that
T = T(r,0,t) and v = v(r,8,t) and that the stress balance is given by

3 Ve) aT
a_ (e =3 . (3
ar <r ra] ae r-]

Here, r 1is the dimensionless radial coordinate and © 1is the polar angle;
these are depicted in Fig. 2. Since the flow is axisymmetric, the vector v
has only two nonzero components: v, and vg, the velocities in the radial
and polar directions, respectively.

Because we neglect bubble inertia and gravitational forces, the total
hydrodynamic force Fh on the bubble vanishes for all t > O:

() - JZﬂ do Jﬂ neP(1,6,t)s1n 6 do = 0 @
0 0
Here, n is a unit vector normal to the spherical bubble surface and P(r,6,t)
is the hydrodynamic pressure dyadic (tensor).

We briefly mention the remaining conditions on the temperature and
velocity fields. The undisturbed temperature and velocity fields prevail (1)
initially for all space outside the bubble and (2) far from the bubble for all
time. The neglect of thermal transport within the bubble requires a zero
thermal flux normal to the bubble surface for t > 0. Because the bubble does
not change in size, the radial velocity v, vanishes at the interface.
Lastly, the assumption of incompressibility requires V e v = 0.

3. SOLUTION

To solve this system of equations, we defined a modified pressure field
such that its gradient is given by the quantity within parentheses in Eq. (2),
introduced the streamfunction for the axisymmetric flow, and then applied the

Laplace transform technique to replace the variable t with the parameter s.



Analytic functions were found for the transformed temperature and
streamfunction fields that satisfy the differential equations and all
conditions. The solution yielded the following expression for the transformed,

dimensionless bubble velocity U0U(s):

l(1+ 1+ YsPr )

S 2 + 2VYsPr + sPr

(5)
[3 , 53 +3[s>]
6(1 +4/s)

Multiplication of this expression by s and taking the limit as s

Ucs) =

approaches zero yields a dimensionless terminal velocity of 1/2, in agreement
with the analysis of Young et al. (1959). MWe also applied the initial-value
theorem twice to Eq. (5) to determine dU/dt at t = 0. The first use of the
theorem gave the expected result that U(O0) = 0. The second use gave

du
o 6 . (6)

0
The step-function character of the acceleration precluded further application
of the initial-value theorem.

To confirm that the bubble remains spherical throughout the acceleration
period, we applied our analytic result for the transformed stream function to
the transformed normal stress condition. The exact satisfaction of this
condition indicates that there is no deviation from the spherical shape.

Numerical inversion via an IMSL routine gave the bubble velocity as
functions of time with Prandtl number as a parameter. Figure 3 is a log-log
plot of the dimensionless velocity versus dimensionless time for Prandt]
numbers of 0.01, 1.0, and 100. |

4. DISCUSSION
The two most interesting features of Fig. 3 are that (1) all three curves

are nearly linear before a transition to the terminal velocity and (2) the



dimensionless time to the terminal velocity ranges from order one to order
100, depending upon the Prandt)l number. These features are discussed below.

For t << 1, the dimensionless velocity U(t) is given
approximately by

uct) ~ 6t. (7

The value of 6 (cf Eq. (6)) derives from the acceleration calculated from
application of the initial value theorem. Equation (7) is represented in
Fig. 3 as the dashed line; it fits the data reasonably well for small values
of t.

Written in dimensional form, Eq. (7) becomes

—oTA
U*(t*) ~ 6 oa t* (8)

for t*v/a2 << 1. (The raised asterisks denote dimensional quantities.)
According to Eq. (8), the leading term in the short-time expansion for the
dimensional velocity is independent of viscosity. This result is analogous to
that for a drop or solid sphere accelerating from rest due to buoyancy forces
(Chisnell 1987). Though viscosity does not appear explicitly in Eq. (8), it
does appear in the time scale and thus affects the values of t* for which
the relation is valid. For highly viscous liquids or small bubbles, the
relation is valid only briefly. On the other hand, for low-viscosity liquids
or large bubbles, Eq. (8) is likely to apply for a much longer period of

time.

Another interesting feature of Eq. (8) is that the bubble's acceleration
is inversely proportional to its radius. Consider two bubbles of different
radii released simultaneously into the same system. During the time regime
for which Eq. (8) is applicable for both bubbles, the smaller bubble may be
expected to move faster than the larger one, even though the terminal velocity

of the smaller bubble,
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is less.

Our focus now shifts to estimating the duration of unsteady migration.
According to Fig. 3, the time t to a terminal velocity is of order unity if
the Pr < 1, but of order 100 if Pr = 100. (Recall that the factor used to
nondimensionalize time was the viscous scale a2/v.) It thus appears that for
Pr < 1, the viscous scale is appropriate, but for Pr > 1, the product of the
Prandt! number and the viscous scale is appropriate. This product equals
a2/«, which is the characteristic thermal time scale for the system. Observe
that for any value of Pr, the larger of the viscous or thermal scales appears
to be a good estimate of the transient period.

The above rule to predict the time to steady state was based upon
graphical data for three curves. For a more quantitative picture, we examined
numeric data for five liquids having Prandtl numbers in the range 0.01 ¢ Pr ¢
100. For each Prandtl number, we determined the dimensionless times T90 and
Tgg (based upon the appropriate scale) for a bubble to attain 90 and 95 percent
of the terminal velocity. A1l results (Table 1) are of order unity and thus
confirm that the rule is correct.

To understand why the above scaling works, observe that if Pr << 1, the
thermal field attains its steady-state value while the fluid motion is just
beginning to develop. The time for the velocity field to reach its steady
state s thus governed by the viscous time scale. If Pr >> 1, the fluid
motion, which is driven by thermocapillary forces and thus by the temperature
field, becomes quasistatic with a slowly-developing thermal field. In this
case, it is the thermal time scale that determines when the bubble reaches its

terminal velocity.



5. SUMMARY

The unsteady thermocapillary migration of a bubble within an otherwise

quiescent liquid was studied via analytical methods. Within the same system,

small bubbles are predicted to initially move more rapidly than larger ones,

even though their terminal velocities are less. The larger of the viscous and

thermal time scales is a good estimate of the duration of the unsteady

migration period.
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TABLE 1. - DIMENSION-
LESS TIMES TO TERMINAL
VELOCITY

Pr = v/a T90 Tgg

0.01 0.28 | 0.47

.10 .30 .52
1.0 .58 { 1.10
10.0 .29 .68
100.0 .26 .65
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FIGURE 1. - ORIGINS OF THERMOCAPILLARY
MIGRATION. VARIATIONS IN SURFACE TEN-
SION ALONG A NONISOTHERMAL INTERFACE
CAUSE THERMOCAPILLARY SHEARING STRESSES.
WHICH VISCOUS SHEARING STRESSES TRANSMIT
TO THE LIQUID. LIQUID IMPOSES A RE-
ACTION FORCE UPON THE BUBBLE, CAUSING
IT TO SWIM TOWARDS THE HOT LIQUID WITH
A VELOCITY Uct).
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FIGURE 2, - SCHEMATIC OF A THERMOCAPILLARY EXPERIMENTAL CELL IN ZERO
GRAVITY. IN TYPICAL EXPERIMENTS. A LINEAR TEMPERATURE FIELD IS
ESTABLISHED PRIOR TO THE INTRODUCTION OF A GAS BUBBLE AT POINT O,
THERMOCAPILLARY ACTION CAUSES THE BUBBLE TO MIGRATE WITH THE UN-
STEADY VELOCITY UCt) IN THE DIRECTION OF THE THERMAL GRADIENT.

EVENTUALLY. THE MIGRATION VELOCITY BECOMES STEADY.
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FIGURE 3. - DEVELOPMENT OF THERMOCAPILLARY MIGRATION.
EACH SOLID CURVE REPRESENTS A PLOT OF THERMOCAPILLARY
MIGRATION VELOCITY U (t) VERSUS TIME t FOR A SPECI-
FIED PRANDTL NUMBER PR = v/a. THE DASHED LINE PROVIDES

A GOOD ESTIMATE OF THE VELOCITY FOR SMALL VALUES OF t.
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